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ABSTRACT

A simple formula for the transition probability for electron exchange

between unlike ions and atoms is established within the adiabatic
approximation by employing the Linear Combination of Atomic Orbitals (LCAU)
method. The formula also invoives an adiabatic parameter, introduced by
Massey, and thus the difficulties arising from the internal enerqy defect and
the adiabatic approximation are avoided. Specific reactions

Li3* + HaLi** + HY and Be? + H »Be3* + H' are considered as examples. The
calculated capture cross section results of the present work are compared with
the experimental data and with the calculations of other authors over the

velocity range of 107cm/sec to 108cm/sec.



I. INTRODUCTION
Charge transfer collisions provide an interesting three-body system which

is amenable to theoretical analysis in addition to their importance in the

studies of fusion plasmas, astrophysical processes, and more recent studies of

short wavelength lasers. Traditional interest still looms as important
applications in heavy ion accelerators and radiation-induced chemistry as well
as charged particle transports in matter.

In the past, the perturbed stationary state (PSS) method has been applied
to study a symmetric resonance process such as AT + A+A + A*. various
theoretical approaches rest on obtaining stationary molecular states
(refs. 1-3). These results are usually in good agreement with their
experimental counterparts. Encouraged with this success, in the above
resonant process, extending these calculations to the collisions between
unlike ions and atoms is presently studied. In this context, the reaction of
the type

Al B> A9 B9 af (1.1)

in which AE is the internal energy defect would be of great interest.
Unfortunately, the formulation of the problem of the non-symmetrical
charge transfer collisions of equation (1.1) is rather difficult Qsing the
procedures similar to the ones applied to the symmetric case. The correct
procedure should involve the expansion of the wave function in terms of
molecular wave functions. Rapp and Francis (ref. 4) have pointed out that the
connection between the molecular and atomic approach in non-symmetrical charge
transfer is not easily obtained. These authors in their work abandoned the

molecular expansion, and instead, within the lowest order approximation, they



replaced the molecular wave functions and energies by atomic orbitals and
atomic energies.

In this paper, we adopt a correct molecular expansion procedure by
employing the Linear Combination of Atomic Orbitals (LCAO) method. The non-
symmetrical charge transfer process of equation (1.1) is calculated for Tow
and intermediate energies using an adiabatic approximation together with
Massey's (refs. 5 and 6) adiabatic criterion resulting in a limited collision
range. A simple formula for the transition probability is obtained under the
two-state approximation. The formula is expressed.in terms of overlap
integrals, exchange integrals, and Coulomb integrals. The internal energy
defect AE and the collision range RC also appear in these formulas.

Specific reactions LiS* + H-Li™ + HY and Be?* + H »Be3* + HY are
considered as examples. The results are compared with the experimental data
and with the calculations of other authors, and a brief discussion is
presented. All these overlap integrals, exchange intergrals, and the Coulomb
integrals can be calculated analytically by employing the hydrogenic wave
functions. The simplified picture presented in this paper gives insight into

the essential nature of the charge transfer process.

IT. QUASI-CLASSICAL APPROXIMATION
As is known, the passage from quantum mechanics to the limit of classical
mechanics is similar to the passage from wave optics to geometric optics
(ref. 7). The field components U in the electromagnetic wave can be written
as U = aei¢, where a is the amplitude, ¢is the phase and i is the square root
of minus one. The limiting case of geometric optics corresponds to a short
wavelength i.e., to a large value of the phase ¢. Similarly, in the limiting

case of classical mechanics, one writes the electronic wave function as




¥ =a eis/h where a is a slowly varying function, S is the action which
takes on large values, and h is the Planck constant divided by 2n.
Henceforth, we will use atomic units in which h = 1. This use of the action
variable is determined after considefing the analogy of the principle of least
action in classical mechanics and Fermat's principle in optics. As is known,
the action function is given by

S=-FE +I ] P;da;

(2.1)

~ - er ) pydy;
and becomes large for small velocity v. Thus, Landau (ref. 7) stated that
Y = aeiS is the wave function of an "almost classical" or “"quasi-classical"
physical system. Furthermore, by absorbing the second term of the above
equations into the quantity a' and retaining the adiabatic approximation

(i. e., v extremely small), the wave function ¢ becomes

Lt
v = a' o1l ¢okdt (2.2)

where a' is a slowly varying function of time t. Let us now apply the above
to the capture process of present interest.

Consider the situation in which the projectile captures an electron from
the target. Then ¢1 is the wave function of the electron long before the
collision and is essentially the electronic wave function of the target. On
the other hand, after the collision the wave function of the electron would be

the electronic wave function wz of the projectile. These states are not



stationary states in the sense that S~ Et is an extremum along the
trajectory. The stationary states of this system are the two molecular states
denoted by wgand wu. (In a symmetric case, g refers to a gerade state and u to
ungerade state.) Thus, according to equation (2.2), within the adiabatic

approximation, the wave function at anytime t can be expanded as

b = A(t) yoexp(-i j‘jtosgdt) + B(t) yoexp(-1 )5, E dt) (2.3)

where Eg and Eu are eigen energies; wgand wu are the corresponding two eigen
functions. (Two-state approximation is employed.) Equation (2.3) is similar
to the one usually derived under the PSS method (ref. 8).

The quantities A(t), B(t), wg’ and b, are slowly varying functions of
time. The conditions under which A(t) and B(t) can be treated as time
independent are discussed in the appendix. Under the adiabatic approximation,
one can ignore the terms ig and @u relative to the other terms in the
pertinent equations. This leads to the conclusion that the quantities A(t)
and B(t) are independent of time.

For simplicity, consider a fully stripped ion of atomic number Z, moving
slowly through the target hydrogen atoms. Let " be the distance of the
electron to the target nucleus and rs the distance from the projectile nucleus
(fig. 1). The internuclear distance of the projectile and the target is

denoted by R. The Hamiltonian of the system with the electron and two nuclei

in atomic units is

(2.4)
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Wave functions of interest are

1
w1= 7 exp (-rl) (2.5)
P AmZn°l rg'l exp(-Zrz/n) (2.6)
, 372 22n-1

The wl is the wave function of the electron when it is localized near the
first nucleus (target), ignoring the presence of the fully stripped projectile
jon. On the other hand, wz is the wave function of the electron when it is
localized near the projectile nucleus, ignoring the presence of the target
nucleus,

As noted earlier, in arriving at equation (2.3), the wave function at any

time is given by the linear combination of two quasi-molecular stationary

states wg and wu . These states are determined by the variationai method by

employing the Hamiltonian H with their form given as

1

S s\ SR DY
Vg 7zras b2 (2.8)
—L (4= ¥y)
LR e (2.9)

where S = | wlwz drt is the well known overlap integral. The eigen value of
the Hamiltonian is the potential function for the nuclear motion in the Born-
Oppenheimer approximation. We note that the charge transfer problem is

similar to the usual potential crossing problem.



The quantities A(t) and B(t) in equation (2.3) are determined from the

initial condition ¢ » wlas t > -to to he satisfied by the value

21
A=2VZTT S
B=%/’z_"- 55

Letting t » =, using equation (2.3), we obtain

vECiegr G,

where

o 4o
w _ 1 -i E dt -i E dt
ey = 5 (e ) Bl o T UL )
Hence, the transition probability is given by
w12= C52=s1'nn
_1l e
where n = §-j4” (Eg- Eu) dt

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

For any symmetric resonance process, the quantity AE = Eg- Eu plays the

key role in determining the transition probability. We will determine it by

the variational method. We note that the molecular wave function ¢ can be

obtained by the LCAO method as

o = Cpvy+ Gy



The expectation value of the Hamiltonian H is

2 2
C7 Hy,+ C,C,(H 5+ H,,) + C, H
SR, X S Uik Mt M S (2.16)
] ¢°dr C1+ C2+ 2 C1C25
where
H1j= J w? H wjdr (2.17)
The stationary states are obtained by the stability condition
de  _ 9  _
Yoo —Eé =0 (2.18)
which leads to
Cl(Hll- €) + C2 (le- eS) =0 (2.19)
C - - =
"1(H21 eS) + C2(H22 e) =0 (2.20)

H. Since H is a Hermitian

L]

For the symmetric case (Z=n=1) we have Hy; = Hy,
operator, wl and ¢2 are real functions, thus le = H21. The secular equation

of equations (2.19) and (2.20) is

2

(H-€¢) (H-¢) = (H12- eS) (2.21)
which leads to two eigen energies
H-H
_ 12
1" T-S (2.22)



HA+ H

12
" TS (2.23)
from which
2 (Fypm HS) (2.24)
[P = .
2~ F1 Y
Using the Hamiltonian and the wave functions (Z=n=1) results in
H=E o+ . (2.25)
H12= EZ,OS + K (2.26)

where El o and E2 n are the atomic ground state energies of the electron in
’ L]
the target and projectile orbitals, respectively. The S is the overlap

integral given (ref. 9) as

S=)viv, &
(2.27)
R2 -R
=(l+R+=3)e
and K is the exchange integral given (ref. 9) as
TS e i
R 1
(2.28)
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and J is the coulomb integral given (ref. 9) as

2
J L J ?l-dr
"R T ry
(2.29)
Thus,
le- HS = K - JS (2.30)
so that,
2 4R 2 8R  2R%
( - —3) exp(-R) - (g + 4 + = + =) exp(-3R)
R 3 R 3 3
€pm £9% — = T e TS (2.31)
R®,2
1 -(1+R +-—§) exp (-2R)
For, R >> 1, we have from the above:
4 -R
€2" e.l o d - § Re (2.32)

which is on the order of the result given by Firsov, Landau, and Herring (see
discussion in ref. 10) of -4Rexp (-R-1). We now consider the extension of
these results for symmetric resonance transfer to non-symmetric resonance

transfer.

III. NON-SYMMETRICAL RESONANCE TRANSFER
In recent years, because of its usefulness in many areas of physics, the
reaction AZ+ B » AZ'q+ BRI+ AE and, in particular, the fully stripped ion
charge transfer process have received great attention; Considerable progress

has been made in both the experimental and theoretical studies.of this

problem. The unitarized Distorted Wave Approximation (UDWA) of ref. 11 has
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been a successful numerical method, since it covers a wide erergy region. For
extremely low energies, the classical Barrier model of ref. 12 and the
absorbing sphere model of ref. 13 have been of interest to experimental
physicists hecause of their considerab]é simplicity. The other numerical
models, on the other hand, involve complicated calculations. Still, the early
Landau-Zener formula is widely used by many authors, since it has been studied
fully for a long time (refs., 14-17). However, the Landau-Zener formula has
its limitations. In this model the transition is assumed to be limited to a
narrow region around the crossing point ch. The potential energy separation
varies linearly with the internuclear distance in the narrow region, namely,

-~

(H'i- Hf) Yy (R-R_)

cp
The coupling matrix element Hif has a constant value B.

In 1962, Rapp and Francis (ref. 4) studied the charge exchange between
unlike atoms. They pointed out that the connection between the molecular
states and the atomic orbitals is not easily obtained. Therefore, as a lowest
order approximation, they replaced the wave functions of the stationary
molecular states by the atomic orbitals. This connection was found by
employing the LCAO method. The physical difficulties arise when one
simultaneously retains the internal energy defect and the infinite interaction
range within an adiabatic approximation or a quasi-classical approximation,
because such a situation renders transition probabilities small. Actually,
the infinite interaction time does not exist at all, since there are so many
target atoms in the material that the average interatomic distance probably
will be a suitable estimate 6f the upper limit of the effective interaction

range. After such an interaction time, the projectile undergoes another
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collision process. Massey (refs. 5 and 6) introduced an adiabatic criterion
based on the following argument. Classically, the transition probability is
proportionél to the ratio of transition time and the collision time. Since
now there exists an energy defect, AE, the transition time can be estimated
as 1/aE. Meanwhile, the collision time is proportional to an adiabatic
parameter divided by the velocity of the projectile. Only when the transition
time can be comparable to the collision time does there exist a significant
transition probability. The adiabatic parameter thus cuts off the interaction
time. This parameter is of the order of the atomic dimension. Hasted pointed
out in ref. 6, that "the analysis of a large volume of experimental data leads
to surprisingly small probable errors (10-20 percent) with a value Re= 7R
common to different types of reactions." This adiabatic parameter of 7& is
the range of internuclear separation over which the charge transfer is deemed
possible (ref. 11). Actually, the cross sections were measured as functions
of projectile velocities. Surprisingly, the velocities corresponding to
maximum cross sections v, were almost a linear function of AE . The slope
leads to an adiabatic parameter RC = JA . MWe apply this adiabatic parameter
as a "cut-off" range in our calculations.

The capture cross section is thus determined in terms of the adiabatic

parameter R_, the energy defect AE, and the velocity of the projectile. It

C’
also depends on the atomic wave functions of both the projectile and the
target and the interaction between them. In the non-symmetrical case, the two
stationary molecular states are still denoted by wg and wu, where the

subscripts g and u are used here only for convenience. These states assume a



more general form than the corresponding symmetric resonance case.

general states are defined as

and

b= Op g+ Tobp)
where Cl and Cy. are determined by the normalization condition

2 2 2 2
1 = C1 {J ] dr + ?flj V¥, dr + f1 J Vs dr}

so that
C, = 1
boos asfys f12)1/2
Similarly,
C!= 1

172
(1 + 25f2+ f22)
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These more

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

The quantities S, fl, and f2 are functions of internuclear distance R.

Under the adiabatic or quasi-classical approximation, the quantites A(t)

and B(t) in equation (2.3) can be treated as time independent. Thus,

equation (2.3) with equations (3.1) and (3.2) becomes

.t
v = A Cl(w1+ f1¢2) exp (-i j_to E_dt)

g

' ., t
+ B C1 (w1+ fzwz) exp (-i j_to Eu dt)

(3.6)
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Since ¥ must tend to ¥y when t »- t, » we obtain from (3.6):

A = (3.7)
2= 1 |t

and

B' = - . (3.8)
fam 1 |-t

with A' = A C; and B' = C*,4

The quantities A', B', fl, and f2 are all functions of internuclear

distance R. Also, these quantities should be symmetric. Thus, A'(-to)

A'(t.), B'(-t.) = B'(to), fl(-to) = fl(to), and fz(-to) = fz(to), since the

0 0)

variational method is invoked, by which they depend only on the distances
between the projectile and target nuclei. Also, since the quantities A and B

can be deemed to be time independent

(3.9)

Equation (3.6) can now be written in a general form as

v=Cyv v Gy, (3.10)
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where,

CII

| . ' .t
A f1 exp(-i j_goE gdt) + B'f 2exp(-1 J _goE udt)

(3.11)

f, f
2 1 .t .t
{exp(-i | E_dt) - exp(-i | E dt)}
fz- f1 'go g -90 u

where the coefficients are to he determined by the stationary phase method
applied to the expectation value of the Hamiltonian. Hence, the transition

probability is given by

f, f
2 1y2 .2
Wio= 4 ( 7)o fl) sin™ (3.12)
where
1 .t
n = 5.1;90(59- E,) dt (3.13)

Notice that the transition probability of (3.12) differs from the

f, f
symmetric case by an additional factor 4 (—?g—ﬁ?—Jz This factor is
2" '1

determined by the LCAO method, i.e., by the solutions of the basic equations
(2.19).

CI (Hl' e) + CE(B-eS) =0 (3.14)
and

C; (B-€S) + C" éH -Ze) =0 . (3.15)

where € = H12= J21 because H is Hermitian and wl and wz are .real; Hl = Hll and

Hy = Hap.
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In order to obtain a simple and explicit solution for the transition
probability, the values of 8, S, and € will be discussed. When the
internuclear distance is not too small, the quantities -8 and S are of the
same order, whereas € is about the order of -0.5. Thus, by replacing the
quantity B - €S in equations (3.14) and (3.15) by %-B, the problem is amply
simplified. Later in this section, we will explain in detail the
justification for this approximation. Thus, equations (3.14) and (3.15) can

be written as

n [1] 1
CY (Hy-€) +Cy g8 =0 (3.16)
and
C' 28+ ¢l (H-e) =0 (3.17)
172 2 (Hy .
which give
(Hy-€) (Ho-e) = (L8)2 (3.18)
1 2 7 .

For the case H2 - H1 > 0, the above equation when solved for € yields

Ho+t H,  (H,- H,) B
e = 22 Ly 2 5 L (1 +—=) (3.19)

where

2”1 (3.20)

By=( 1- (8/28) % 1) & (3.21)



When the internuclear distance is not too small, g is rather small.

17

Also, in

the non-symmetrical process, except for a resonant channel, Hl and Hz are

usually not very close to each other. Thus,

H,- H

The equation (3.19) leads to

e,= H,+ B

?

The equation (3.16) for € =€, becomes

thus,
ot By By) o Hym
1 1 B/2 g/2
For ¢ = €1 > the equation (3.17) becomes
Cll
18 " -
—- + CZ(HZ' Hi+ Bl) =0

(3.22)

(3.23)

© (3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Thus,

C - B/2 8/2

2 . (3.29)
2" Ty T W,m AF BT W- W

f

Thus, the transition probability is

1.2 .2

Wy,= 4 (K) sin " n (3.30)

where
P S U ¥/ S M s (3.31)

fp  f Ho- Hi- By B/2
and
1t 1t

n = -2-1_90 AF dt = - 1_90 [(Hy- H)) + 2B} dt (3.32)

In the case H1¢ H2, or where Hl and Hz are not clnse to the same value,

applying (3.22), and remembering that B; is of the order of 32, we have

~ HZ- H1+ B1 z_HZ- H1

A 872 8577 (3.33)

and the transition probability is
Wips ———— 5, sin" n (3.34)
This is the required simple transition probability formula which is

determined by Hy,, (Ho- Hy), and the value of n. The quantity Hi» is closely

related to the overlap integral. Physically, it is reasonable to expect
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higher transition probability with more overlap. The quantity HZ' H1 is
strongly related to the energy defect AE (at a large distance). Obviously
there will be less transition probability with more energy defect.

For the case Hi= Ho, we have from equation (3.18)

(H - e)%= (8/2)° (3.35)

which yields
e =H+8/2 (3.36)
f.=1, f,= -1and A = 2 (3.37)

2

The transition probability for this case is given by W sinzn, which is the
familiar formula (2.14) of the symmetric case obtained in Section II.

Let us now discuss the assumption of the replacement of the quantity
B8 - S¢ by B/2 in equations (3.14) and (3.15). Initially, this approximation
seems somewhat arbitrary. However, B/2 is not strictly equal to 8 - Se in
equations (3.14) and (3.15). Recall that the equation (2.19) is derived from
the variational principle, which implies that the LCAO molecular state
function is made the most stable state at that particular interatomic
separation. On the other hand, equations (3.14) and (3.15) were altered by
the replacement B8 - S » 8/2, which implies that a set of molecular states

are chosen that, although not the most stable, nevertheless approach the most

stable states for large separation. In other words, a set of quasi-stationary

molecular states are chosen. In this way we may refer to a quasi-stationary
molecular state expansion procedure. Actually, in chemistry, at a large
distance, the molecular states are not stable at all. However, we are more

interested in looking for a set of mathematically permitted basis states.
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Probahly, this is one of the reasons why the atomic expansions are widely used
(refs. 1, 2, 4, and 18). Thus, it is more important that these molecular
states be orthogonal. Fortunately, our qpasi-stationary molecular states
approximately satisfy the requirement of orthogonality. In the following, we
will explicitly show how the orthogonality requirement is approximately

satisfied. Consider
Y = C1(¢1+ flwz)

g
(3.38)
V= O g Ty)
- 1 Vo 1
where o 2 1/2 and €1 = , 1/2
(1 + Sf1+ fl) (1 + Sf2+ f2)
£, = g-é“ e Sl S A N
and 1 1= 0.58 2 Cl = H2- H1
,’ 'l'g'llu dr = Clci J(w1+ flwz) (‘p-l"' fz‘pz) dr
Now, (3.39)
= C,C. {j(w2+ f.f wz) dt + ) (f,+ f,) vy, dr}
RS | 1 1272 1 2 172
Remembering f.f, = . 1, we have
J gt = €8] S (F 1+ ) by, do (3.40)

For the case H; #H,, when the internuclear distance R is not too small,
usually |H, - Hy| >> [0.58]5 thus [fy| >> 1 and |f,| << 1. Also, f; +
f2 >ty
1 1 1

7177 > F and 7177 !
1+ 25F + f 1 1+ 25F + f
( MARL ( ARPY
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One sees from these that

f
| bgv,dr > ?%-J Vp¥pdt =] pvodt =S

Now, the overlap integral of the two atomic orbitals between the
projectile and the target is small except when the internuclear distance
approaches zero. Thus, | wgwudr = 0,

For the case Hy = H,, we have f1 =1 and f2 = -1. Thus,

I .
J v ¥y dr = 7 17 J (f1+ fz) wlwzdr =0

For the case Hf\ H2, we have f1 = 1 and f2 = -1, Thus,

J Vgv dr ~ (g f,) S~ 0

We observe that for the cases Hl = H2 and Hf\ H2, because of the
cancellation between f1 and f2, the orthogonality is preserved. Ffom the
orthogonality point of view, this expansion is at least not worse than the

atomic expansion.

The capture cross section o, according to the impact parameter method, is

given by
o =21 P|t bdb (3.41)
0

(see fig. 2) where b is the impact parameter, and P refers to the transition
probability. Usually, P takes the value Pt+ w; hut as discussed earlier, an
adiabatic parameter will be employed to evaluate the cross section. The

transition probability P is given by equation (3.34) as
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2
— 12 sin (3.42)

(Hz' Hl)

P =

where all the quantities appearing in this equation are functions of the

internuclear distance R = (b2+ % Rg)

parameter defined by 2 v to= Rc. The value of the parameter R. is chosen to

172 in which RC is the adiabatic

be 7A.

IV. CHARGE TRANSFER IN Li3* + H
Let us evaluate the magnitude of the transition probability for the

fd]]owing reacton:

Lidt & W LiZt(n=3) + 0
The magnitude of the transition probability is
2
"1z (He# H.,)
Tﬁé- H{Y )
Po= (4.1)
1,2
4 (K) (Hl“ H2)
1 (H1= Hz)
where
o -0 (M Byt By)
‘('Hl- Hy- Bl) 0.5
Hip=) ¥y W p
) 1,2 21,1
AL AR o VAP I (4.2)

|
m
w
+
!
-~
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1.2 1 1.1
W=l V- - &
1 "
= E, -ZJd.+1L (4.3)
1,00 2 91* R .
1.2 7 1.1
AP RPICE A S S YA PR
2 "
z
B E2,n - Jot R

(4.4)

The quantities B, Hl’ H2, and n are calculated by evaluating the overlap
integral S, the exchange integral K, and the Coulomb integral J, defined as

follows:

S =/ wlw? dt, K = T and
N 1
Jy=J wi d J : d
3= ) == dt, =) —dr
1 r2 2 1

The integrals S and K can be evaluated by introducing well known

transformations of ref. 9 (fig. 3):

20| =

A =g (rytr))i1<A (o (4.5)

1
u = ﬁ-(rz— rl); _l<ucl (4.6)

and drt = ) dé. (4.7)
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For our special case, 22= 3, Z1 =1, and n = 3, we have

w
|

=] vy, &
R 3¢ R

- 18 7 aBIBY 0 )Pt 0’ e o

Now, from table 1, the value of A3 = 0,013; thus, we obtain

S < 0.013 (1.6 R%+ 8%+ 24 R+ 48R + 48) ™" (4.8)
Similarly, the exchange integral is
3 .2 R
K = 0.026 (4R3+ 8R%+ 12R + 12) e (4.9)
and
i 1.2 1 1
B =) ¥ (-39 -7+ Yok
1 "2
v v
) 57 12
"t R T
- 0.5 + 3L K

The calculations of the Coulomb integrals J; and Jo are done in the

following way. (See fig. 4.)

‘l»'z 2
_ 1 dt _ 2n -2r sin 6 d rdr
=) = 5l e 272

2 (R"+ r°- 2rR cos 8)

1/2
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2 (4.10)
=2 e PR 202 o 1P :._1_ 1+ g.__‘__zi’_]

where p = r/R. Finally, one obtains

One notes that J,+ =

1

J

1

1
R

as follows (fig. 5):

-] e PRoZ g T PR gy

(4.11)

(R > 1)and J1+ 1 (R+ 0). The quantity Jp 1s calculated

2
l"2 2 2r sin 9 ® rzdr
Jo= | Lt =2 (Ax 9)2 J e72r__sin@ @® ridr
2N 3 (R%+ 2. 2rR cos 0)1/2
(4.12)
o % - £0.083 R*+ 0.21583+ 0.645R%+ 1.20R + 1.61 + 3 e R

For the calculation of n, one notes for the Z = 3 and n = 3 case

(resonance) that

_ 3
Hl"' -005 - 3J1+ "R'

: 3
H2= -0.5 - J2+ "R—

8= (14 (8)?2 Tt a2 = (Hym )
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Thus,

Hy- M+ 2B) dt (4.13)

where, R' = 2 2.2

The capture cross section, ¢, 1is given by

o = [ P(R) 2rb db (4.14)

where P = P (R) sin?n in which P, is taken from equation (4.1) and
1.2

le, HZ' Hl’ A, and B1 are all functions of R2- b2 + Z-RC.
V. RESULTS AND NISCUSSIONS

The results of the calculations for the reactions Li*** + H>Li*t 4+ y*
are exhibited in figure 6. They are compared with the results based on the
Unitarized Distorted-Wave Approximations of Ryufuku and Watanabe (ref. 18),
the ten molecular-state calculations of Kimura and Torson (ref. 19), and the
calculations of Stollberg and Hai-Woong Lee (ref. 17) based on the Landau-
Zener formula. The results are also compared with the experimental data of
Seim et al. (ref. 20). Also, the results of the calculations for the
reaction Be4++ H + Be3++ H+ are exhibited in figure 7 and are compared with
the UDWA approximation and Exponential Distorted-Wave Approximation
calculations of Suzuki et al. (ref. 21) and with the molecular orbital close

coupling calculation of Harel and Salin (ref. 22). No experimental data were

available for this process.
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In figure 6, both the results of our calculations as well as those based
on the Landau-Zener formula do not appear to show the tendency of the cross
section to increase toward the high-velocity region. This is partly due to
the implied employment by us of the Born-Oppenheimer approximation in which
the effect of the nuclear kinetic energy terms are ignored in the
Hamiltonian. For a large projectile velocity (u2> 108cm/sec), the Born
Oppenheimer approximation should bhreak down. When nuclear motion is
incorporated, there will appear an additional electron kinetic energy term
because of the relative motion between the projectile and the target. This
becomes more obvious when our coordinate system is set on the projectile.
Then the kinetic energy of the electron becomes %—me(62+ 60)2, where Jo is the
velocity of the electron in the laboratory frame. Hence, the average kinetic
energy becomes %-me(u§+ ug). A significant additional kinetic energy term is

obtained when v, is comparable to the electron velocity that is the first Bohr

2
velocity. Also, if we choose the laboratory frame, the electron will receive
an additional velocity from the momentum transfer. Thus, because of the above
reasons, some higher states will be excited, causing a significant
contribution to the total cross section.

Let us now discuss the general energy dependence of the cross section.
One expects that toward the high velocity region, the cross section should
decrease as a result of the increasing relative velocity between the
projectile and the target. In the extremely low energy region, the cross
section for these processes should not rapidly approach zero with a decrease
in v, but rather approach a not too small constant. The calculated cross
section in the energy region of interest (below a few keV) approaches a

constant value due to the term HZ' H1 in the argument of the sine function.

This makes the value of the sine function very large, and the transition
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probability oscillates rapidly. The summation over the impact parameter
approaches an average number, sinzn ~ 0.5. When v becomes larger, there will
be a slow oscillating behavior, but this velocity region is beyond our
adiabatic approximation.

In the symmetric case, since H1= H2, only when the impact parameter b is
small does the transition probability exhibit the rapidly oscillating behavior
different from the non-symmetric situation.

Finally, experimental physicists (refs. 23 and 24) have recently noticed
that below a few keV, the capture cross section shows velocity independent
behavior in helium and lithium materials. It is hoped that our results will
help in classifying these and other relevant capture cross section

observations.

CONCLUDING REMARKS
A semiclassical apbroach is used to derive a quasi-stationary state
method to approximate the charge transfer cross section. The result is only
slightly more complicated than the usual Landau-Zeuer formalism and greatly
simpler than the coupled channel and various distorted wave formalisms.
Unlike the Landau-Zener result, we predict nearly constant cross sections
helow a few KeV in agreement with recent experiments and the more complex

formalisms.
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APPENDIX

In this appendix, the conditions under which the quantities A(t) and B(t)
can be treated as time independent in the equation (2.3) are obtained. The
central point in this treatment is the observation that when v » 0, compared
with the phase change, a is a slowly varying function in ¢ ~ a eis. As

discussed in Section II, this leads to

b= A() bee -i g Tty el JPEu dt (B.1)

We have shown previou;]y that Wg and Wu are slowly varying functions and
had assumed that A and B vary so slowly that they can be treated as time
independent. Now, let us estimate how slowly Wg and ¥, are varying and under
what conditions A and B can be treated as time independent. Having done this,
we will know the conditions under which our analytical model of this paper
works.

The wave functions of the stationary states can be formed by linear

combination of atomic wave functions, i.e.,

vg= Gt Ty
and (B.2)

bym Cpvgt G vy

where wland wz are the atomic electronic wave functions of the projectile and
the target, respectively. They are independent of the internuc]eaf distance
R. The coefficients Cl’ C2, C'l, and C'2 are determined by the normalization

condition and the LCAO method to bhe
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C.= 1 - C.= 1
Powast e e 27 72 1y asp 4 £2)172
S S S -
NV 2.1
(1 + 25F ¢ £2) / (1 + 25f,+ £5)1/2

where f, and f, are solutions of equations (2.18) and (2.20) and are known
functions of the internuclear distance R.
Now, first let us estimate how slowly the molecular eigen functions

vary. For this consider

vgm Cp¥gt Co¥y

dc ac, o
(vt v )2 - v,

where b is the impact parameter and v, is the velocity of the projectile. One
notes that if v, is small, then &g and similarly @u should be small. Now,

consider the following

.t .t .t
iV =i A wg o | J"Eg dt | i A wg o | J "Eg dt, Eq A.Wg oo | "Eg dt

e -1t (B.3)
e -1
u u u'u EU dt

In the above, the second term contains a factor v, because of @g, and the

third term contains a factor of E_ which is about the order of unity.

g

?< 1, compared to the terms containing Eg and Eu, we can

neglect the terms ig and @u .

Therefore, if v
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Next, let us discuss the behavior of the quantities A(t) and B(t). For
this we assume $q= $u= 0, then using the Schroedinger equation i@ = Hy and

equations (B.1l) and (B.2), we obtain

t t
.0 -] “E_dt _ -i | "E_dt
iA (C1+ CZS) e g + A {Cl(Eg Hll) + CZ(EgS - H12)} g
+iB (! +Cls) e JUEE, g {CI(E - H.) + CL (E.S-H, )} e JTEget g
1 2 1Vtu” 1l 2 ‘tut 12 -
Recall the basic equation of LCAO (eqs. (2.19) and (2.20))
Cl(Hll- €) + Cz(le- eS) =0
CI(H?l_ eS) + C2(H22- e) =0
and the two sets of solutions Ci» CZ and C'4, C'z corresponding to eigen
energies Eg and Eu, respectively. Thus, the equations
C1 (Eg— Hll) + C2(Egs - H12) =0
C1 (Eu- Hll) + CZ(EUS - H12) =0
lead to
. i JYE at - i JYE dt
i A (Ci*C5) e g%t +i B (Ci*+ C5 S) e u--= 0 (B.4)
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Similarly, starting again from the Schroedinger equation i@ = Hy, we will

obtain

t
' S) e” Ryt 0

., t
i (Cr ¢5) et BTt i (e o

2 1

The above two equations can be written as

.t
: : ' ' - i E-E ) dt
A (C1+ C2 S+8B (C1 + C2 S) e I u g) =0

and (B.5)

.t
195) e- 1/ (- E

. , dt
A (C* €)5) + B (Cy C AL

(B.6)

Now, A and B have nonzero solutions if, and only if, the secular equation is
equal to zero, as follows:

ot
(Cy+ C,S) (c T (E- Eg) at

1+ G 1* CéS) e

g

ot
(C,+ C,S) (Cy+ €35) e i) (E,- Ej) ot

2t Y1 9

which leads to

where S is the overlap integral and is always less than unity except when
R =0 and w1= wz, and where f1 and f2, defined by fl = C2/C1 and fz = C'2/C'1,
are obviously not always equal. Thus, the secular equation cannot always be

zero. Therefore, the only solution of equations (B.5) and (B.6) is A=8=0.
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Thus, if we assume $g= $u= 0, then A and B are independent of time.
However, if v € 1, we can say that wg’ v, A(t), and B(t) are very slowly
varying functions. In practice, if v ( 5.x 107cm/sec , 1. e., in atomic
units v € 0.2 , the condition v €1 is satisfied. It is noticed in figure 6

7

for values v > 6 x 10 cm/sec, our results do not exhibit the increasing cross

section as observed in experiment.



TABLE 1. A list of functions for the reaction of

3+ ++
Li +H » L1 (n=3) + H*

FUNCTION EXPRESSION
s 0.013 e (1.6 R* + 8R? + 24R2 + 48R + 48)
K 0.026 e ™N(4R3 + 8R2Z + 1R + 12)
J, 1 Rl
R R
& 1. (0.043 R* + 0.215 R® + 0.645R% + 1.29R + 1.61 + l) e~ R
R R
B=H - 0.55 + 35
12 R
3
H, - .05-3J+ 3
R
3
H —0.5-3, + 3
2 2 R
A l (HZ - Hl)

2
2
B, {‘/“(;_A)'I}A

AE(R) (H, - H,) + 2B,

2
erz/(Hz - H1) (Hi1#Hy)
Po # 4 A.2 where, A = - 0.58 4 H-Hh#By (Hy~ Hp)
Hi -Hz -B1 0.58
1 Hi = H2
\




Figure 1. Coordinate vectors of the three-body system.

Figure 2.

NDomain of collision at impact parameter b over time domain

-to < t<« to.
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"

~Nj o
N |

Figure 3. Coordinates used for transformation Equations (4.5) - (4.7).

—

Figure 4. Coordinates used for evaluation of coulomb integral Jl.



Figure 5.

Coordinates used for evaluation of coulomb integral Jo.
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